
Ray Tracing Curved Spacetime

Stanisław Kowalski, Cameron Eure, Oscar Haase

December 5th, 2022

1 Introduction

One conclusion of Einstein’s theory of General Rel-
ativity is that there must be objects massive enough
that not even light can escape their gravity: the elusive
galactic entities known as black holes. It’s no surprise
that black holes are notoriously hard to image- how
can you use light to look at something that light can’t
escape? The secret lies in looking at what’s around it.
Black holes are very energetic and distort the space-
time around themselves quite significantly, causing
accretion disks to form and light to bend, and sud-
denly something that should be invisible becomes very
prominent. The goal of this project is to leverage these
phenomena to model what it might be like to look at
a real black hole.

2 Methodology

2.1 Ray Tracing

Our primary method for our black hole visualization is
by using ray tracing. Ray tracing is a technique for ren-
dering objects on computers commonly used in video
games and animated films. In reality, light is emitted
from sources, reflects off objects, and bounces into
our eyes. Ray tracing mimics this process in reverse.
For each pixel on the screen, a different beam of light
is shot out, reflects off objects, and bounces towards a
light source. The computer then uses the information
from the collision and reflection to determine what
color to make the pixel on the image.

This is done mathematically in the language of vec-
tors. The camera is defined using only a position vec-
tor and angular field of view. Thus the camera be-
comes a sort of window through which we need to
define vectors for each beam of light. This is done
by creating pixel sized unit vectors along the rows
and columns of the window, and using linear combi-
nations of them to point a vector through any pixel
desired. These vectors are then used to propagate the
light beam and mathematically detect collisions with
objects.

Figure 1: Visual depiction of ray tracing, modified
from Wikipedia [10]

2.2 Light in General Relativity

The primary assumption with this method is that light
travels in a straight line. However, in reality, light can
curve around massive objects, such as black holes.
In these cases, light rays follow the straightest line-
geodesics- through curved spacetime. The equations
describing geodesics are a set of fourth order ordinary
differential equations- these must be used to propa-
gate the light instead of a simple straight line defined
by a vector.

Each pixel still needs to be “defined” by the vector
used in traditional ray tracing. Instead of defining the
line, it must be used as the initial 4-velocity of the
light ray, which is used as part of the initial conditions
for the ODE solving. The only requirement for the
4-velocity of light is that it is a null vector. Presuming
the camera is small enough compared to the curva-
ture of space, we can define the time component of
the 4-velocity as only the magnitude of the spatial
direction the light is pointing in, resulting in the four-
dimensional norm of the vector being zero.

As we’ve seen in class, there are a variety of meth-

1

ods of formulating the geodesic equations. We imple-
mented two: the geometric derivation and lagrangian
derivation. In both instances, the geodesic equations
are the result of derivatives of the metric. As such,
code was written which utilized the symbolic toolbox
in MATLAB to formulate the equations for any given
metric. Both methods were coded, and the perfor-
mance difference between the two will be commented
on later.

2.3 Propagation and Intersections of
Light

The four second order ODE’s require a total of eight
initial conditions for numerical integrations, which
come from the initial four-position and four-velocity.
The four-velocity was defined above. The four-
position is simply the position of the camera. Both
of these need to be converted into the correct coordi-
nate system of the metric through use of the Jacobian
for the velocity or direct coordinate substitution for
the position.

We now have all the pieces to fully propagate the light
around the black hole- all that is left is to numerically
integrate the equations. This was done with one of
the built in ODE solvers in MATLAB. A variety were
tested, to varying degrees of success. The primary
criteria for our ideal solver was one which provided
sufficient resolution to capture the complex motion of
the light close to the event horizon while maintaining
a relatively low error and computation time.

Figure 2: Example trajectory of massive particle,
showcasing periapsis shift

In the end, ode23t was chosen. This solver utilizes
a second/third order RK optimized for so called stiff
systems. Stiffness is an important factor to consider,
and unfortunately, it varies depending on the metric

and resulting geodesics. Ode23t seemed to be the best
compromise.

MATLAB’s ode solvers return a value for each of
the four spacetime components for each value of the
affine path parameter, λ. The final value of λ deter-
mined how long the integration ran for, and as a result,
directly impacted the performance. As such, it was
necessary to choose an optimal final value. Through
various tests, it was determined that a value of λ = 100
gave sufficient time for the light to be influenced by
the blackhole and then escape to infinity.

Figure 3: Example trajectories of light rays around a
black hole

Once its path was determined, there were three
possible interactions for the light beam. It can either
fall into the black hole, escape the curvature due to
the black hole and travels in a straight line to infinity,
or intersect the accretion disk at some point. These
interactions were detected as follows:

• To detect falling into the black hole, it was a
simple matter of checking if the integrator even
made it to the final value of λ, as it would stop
itself if it detected the error getting too large (a
result of the coordinate singularity at the event
horizon). The resulting pixel was made black.

• If the integrator did make it to the max value of
λ, then the spherical angles were mapped to a
projection of the celestial sphere, and the corre-
sponding pixel used for the pixel on the image.

• To detect if the beam intersected the accretion
disk, all that was necessary was to see if and
when the beam’s trajectory crossed θ = π

2 be-
tween a prescribed inner and outer radius of the
disk.

All of this information was used to determine which
color pixel should be.

2

3 Results

Figure 4: Schwarzschild black hole without accretion
disk, showcasing the warping of light

Figure 5: Schwarzschild black hole with accretion disk

Figure 6: Kerr black hole with accretion disk- notice
the more oblong shape and inner (corotating) photon
sphere

Figure 7: Light trajectories showcasing an Einstein
ring- notice a number of light rays converging to a sin-
gle focal point behind the black hole.

Figure 8: Highlighting the Einstein ring shown in Fig-
ure 6

3

4 Issues

The process was not without its hiccups. Rigorous
testing and debugging was necessary before the final
result, such as that observed in Figure 9. However,
there were also plenty of issues present that were not
the result of human error.

One such issue was the computation speed. The
shader was by no means fast, but there were some
approaches we took to mitigate that. For example, we
shifted to using solely using the geodesic equations
formulated from the Lagrangian method, as they were
much more stable and computed noticeably faster.
As well as this, the computation speed was vastly af-
fected by which ODE solver was used. As stated pre-
viously, ode23t remained the best compromise be-
tween speed, resolution, and stability. However, both
of these issues pale in comparison to the largest time
save: parallelization. Ray tracing is "trivially paralleliz-
able", meaning that it’s entirely possible to run each
pixel independently, simultaneously- one pixel does
not depend on any other. Through the use of MAT-
LAB’s parallel computing toolbox, we were able to
leverage multithreaded processing to drastically im-
prove the speed of the code.

Finally, an issue that continues to plague us: the phys-
ical interpretation of the metric coordinates. General
relativity is notorious for having unintuitive math that
is difficult to make sense of physically. As demon-
strated in class, there is a difference between the coor-
dinate radius and physical radius in the Schwarzschild
metric. This needs to be accounted for in the code.
This is only further exacerbated by the Kerr metric,
which uses oblate spherical coordinates. As such, in
the future it would be necessary to change the code’s
interpretation of coordinates for each metric.

(a) Broken (b) Fixed

Figure 9: Debugging the accretion disk code using a
non radially symmetric test image

5 Further Studies

In the future, with minimal modification, we can in-
corporate other analytical metrics, such as a more
general Weyl-Papapetrou family solver (including bi-
nary systems of Kerr black holes), warp metrics (such
as the famous Alcubierre and more recent positive-
energy warp fields), and broadly any metric with one
pair of off-diagonal elements. Optimally for computa-
tion time and ease of debugging, we would have a pro-
gram analytically create formulas for the Christoffel
symbols and extract shared variables, such as a,Σ, and
∆ in the most common expression of the Kerr metric,
a program to convert that to a C#-like shader code
(HLSL) giving all the Christoffel symbols in an array at
a given xα position, and proceed with the GPU-based
ODE solver we currently have in HLSL WebGL-based
online shader software Shadertoy. However more
immediately available to us and with lower complex-
ity, is a hybrid analytical-numerical differentiation
approach, where the derivatives for the parameters
determining a metric are evaluated analytically as far
as possible, and then numerically where the complex-
ity becomes too large. This limits the losses due to
machine error (a key factor due to the single preci-
sion, 32-bit architecture of the GPU) from both finite
differences and accumulating error due to formulaic
complexity. The derivatives of the metric can then be
efficiently evaluated as an array for 4 matrices, and re-
combined with the inverse metric (which can be com-
puted algebraically for a metric with a single pair of
off-diagonal entries, such the Weyl-Papapetrou fam-
ily) to yield the Christoffel symbols in a near-optimally
efficient manner, allowing renders of extremely com-
plex geometries.

The trajectories of charged particles in curved space-
times, e.g. the Reissner–Nordström metric (charged
static black hole), can be computed just as easily as
the orbital precession and light ray trajectories above,
with similar limitations (e.g. analytic soln.) as above
on curvature, by adding an additional + e

mFα
β ẋ

β term
to the RHS of the geodesic equation.

Additionally, we wanted to study the formation of
accretion disks around a black hole using post-
Newtonian corrected Navier-Stokes equations, but
found that adding a dispersive µ∇2u⃗ viscosity term
to the constant radius solution to the Schwartzchild
equation could model radial layer interaction which
would lead to the formation of spiral arms. Both could
be modeled with the MATLAB PDE toolkit, but the
latter could potentially be analytically solved using
methods popular in quantum mechanics. If solved,
it would be simple to substitute the evaluated time-
dependent texturemap in place of our static NASA
image for the black hole accretion disk.

4

6 Contributions

Oscar Haase came up with the idea for the ray tracing
in MATLAB, revised the report and the presentation,
and wrote the MATLAB ray tracing codes and parti-
cle/light ray trajectory tracing codes.
Stanisław Kowalski researched advanced concepts,
created GPU shader code, assisted Oscar with debug-
ging, and helped revise report and the presentation.
Additionally, Kowalski supplied bananas before the
presentation.
Cameron Eure helped with the foundation for the
project, created and revised the Powerpoint, created
and revised the report, and checked on conceptually
and researched topics regarding the project.

Bibliography

[1] Gabriel Gambetta. Basic raytracing, 2022.

[2] Oliver James, Eugénie Tunzelmann, Paul
Franklin, and Kip Thorne. Gravitational lensing
by spinning black holes in astrophysics, and in
the movie interstellar. Classical and Quantum
Gravity, 32, 03 2015.

[3] O. Jalili K. Mehdizadeh. Charged particles
in curved space-time. J Theor Appl Phys,
10(47–52), 2016.

[4] V.S. Manko and E. Ruiz. Metric for two equal
kerr black holes. Physical Review D, 96(10),
2017.

[5] Alain Riazuelo. Seeing relativity-i: Ray tracing
in a schwarzschild metric to explore the maxi-
mal analytic extension of the metric and making a
proper rendering of the stars. International Jour-
nal of Modern Physics D, 28(02):1950042, 2019.

[6] Y.J. Segman. Warp drive with positive energy.
Journal of High Energy Physics, Gravitation and
Cosmology, 7(906-913), 2021.

[7] Sholloway. Visualizing black holes with general
relativistic ray tracing, Mar 2022.

[8] Frank Grave Thomas Muller. Catalogue of
spacetimes. 2010.

[9] Wikipedia contributors. General relativity —
Wikipedia, the free encyclopedia, 2022. [Online;
accessed 5-December-2022].

[10] Wikipedia contributors. Ray tracing (graphics) —
Wikipedia, the free encyclopedia, 2022. [Online;
accessed 5-December-2022].

5

A Appendix

A.1 Geometric Formulation of Geodesics

1 clear
2 syms lambda t(lambda) r(lambda) theta(lambda) phi(lambda)
3

4 G = 1;
5 M = 1;
6 c = 1;
7 r_s = 2*G*M/c^2;
8

9 metricName = ’Schwarz ’
10 metric = [-(1-r_s/r) 0 0 0; ...
11 0 1/(1-r_s/r) 0 0; ...
12 0 0 r^2 0; ...
13 0 0 0 r^2*sin(theta)^2]
14

15 % OR
16

17 % G = 1;
18 % M = 1;
19 % c = 1;
20 % J = 1;
21 % r_s = 2*G*M/c^2;
22 % a = J/(M*c);
23 % sig = r^2 + a^2* cos(theta)^2;
24 % del = r^2 - r_s*r + a^2;
25 %
26 % metricName = ’Kerr ’
27 % metric = [-(1-(r_s*r)/sig) 0 0 -2*r_s*r*a*sin(theta)^2/sig; ...
28 % 0 sig/del 0 0; ...
29 % 0 0 sig 0; ...
30 % -2*r_s*r*a*sin(theta)^2/ sig 0 0 (r^2+a^2+r_s*r*a^2* sin(theta)^2/sig)*sin(theta)^2];

Declaration of Metric

1 symbols = cell(4,4,4);
2

3 invMetric = inv(metric);
4 vars = [t, r, theta , phi];
5

6 for nu = 1:4
7 theseMus = [];
8 for mu = 1:4
9 theseAlphs = [];

10 for alph = 1:4
11 thisVal = 0.5* tIndex(invMetric ,alph ,’:’) * ...
12 (diff(tIndex(metric ,’:’,mu),tIndex(vars ,’:’,nu)) + ...
13 diff(tIndex(metric ,’:’,nu),tIndex(vars ,’:’,mu)) - ...
14 [diff(tIndex(metric ,mu,nu),t); ...
15 diff(tIndex(metric ,mu,nu),r); ...
16 diff(tIndex(metric ,mu,nu),theta); ...
17 diff(tIndex(metric ,mu,nu),phi)]);
18 symbols{alph ,mu ,nu} = thisVal;
19 end
20 end
21 end

Calculation of Christoffel Symbols

6

1 geodesics = cell (4);
2

3 for mu = 1:4
4 summation = 0;
5 for alph = 1:4
6 for beta = 1:4
7 summation = summation + ...
8 symbols{mu ,alph ,beta} * ...
9 diff(tIndex(vars ,’:’,alph),lambda) * ...

10 diff(tIndex(vars ,’:’,beta),lambda);
11 end
12 end
13 geodesics{mu} = diff(tIndex(vars ,’:’,mu),lambda ,2) == -summation;
14 end
15

16 filename = [’geodesics_ ’ metricName ’.mat’];
17 save(filename , ’geodesics ’, ’r_s’, ’G’, ’M’, ’c’);

Creation of Geodesics

A.2 Lagrangian Formulation of Geodesics

1 clear
2 syms lambda t(lambda) r(lambda) theta(lambda) phi(lambda)
3

4 % G = 1;
5 % M = 1;
6 % c = 1;
7 % r_s = 2*G*M/c^2;
8 %
9 % metricName = ’Schwarz ’

10 % metric = [-(1-r_s/r) 0 0 0; ...
11 % 0 1/(1-r_s/r) 0 0; ...
12 % 0 0 r^2 0; ...
13 % 0 0 0 r^2*sin(theta)^2]
14

15 % OR
16

17 G = 1;
18 M = 1;
19 c = 1;
20 J = 2;
21 r_s = 2*G*M/c^2;
22 a = J/(M*c);
23 sig = r^2 + a^2*cos(theta)^2;
24 del = r^2 - r_s*r + a^2;
25

26 metricName = ’Kerr’
27 metric = [-(1-(r_s*r)/sig) 0 0 -r_s*r*a*sin(theta)^2/sig; ...
28 0 sig/del 0 0; ...
29 0 0 sig 0; ...
30 -r_s*r*a*sin(theta)^2/sig 0 0 (r^2+a^2+ r_s*r*a^2*sin(theta)^2/ sig)*sin(theta)^2]

Declaration of Metric (same as Geometric version)

1 syms dt dr dtheta dphi ddt
2

3 vars = [t r theta phi];
4 dvars = diff(vars ,lambda);
5

6 L = 0.5 * sum(metric .* (dvars.’*dvars),’all’)

Calculating Lagrangian

7

1 geodesics = cell (4);
2

3 % tIndex is a function I wrote that just allows me
4 % to index vectors/matrices of symbolic functions
5 for i = 1:4
6 thisVar = tIndex(vars ,’:’,i);
7 thisDVar = tIndex(dvars ,’:’,i);
8 eqtn = diff(diff(L,thisDVar),lambda) == ...
9 diff(L,thisVar);

10 geodesics{i} = symfun(isolate(eqtn ,diff(thisDVar ,lambda)),lambda);
11 end
12

13 filename = [’geodesics_lagrange_ ’ metricName ’.mat’];
14 save(filename , ’geodesics ’, ’r_s’, ’G’, ’M’, ’c’);

Calculating Geodesics

A.3 Appendix C: Ray Tracing Code

1 clear
2

3 % Camera specifications - leaving out time component for now...
4 camPos = [25 0 3];
5 targetPos = [0 0 0];
6

7 FOV = pi/2;
8 verticalPixels = 500;
9 horizontalPixels = 500;

10

11 %Formulate vectors used for camera transformation
12 vertical = [0 0 1];
13 camDir = targetPos - camPos;
14 horizontal = cross(vertical ,camDir);
15

16 unitCamDir = camDir ./norm(camDir);
17 unitHorizontal = horizontal ./norm(horizontal);
18 unitVertical = cross(unitCamDir ,unitHorizontal);
19

20 outerPixelHorzDist = tan(FOV/2);
21 outerPixelVertDist = outerPixelHorzDist *(verticalPixels -1)/(horizontalPixels -1);
22

23 horizontalStep = 2* outerPixelHorzDist /(horizontalPixels -1) .* unitHorizontal;
24 verticalStep = 2* outerPixelVertDist /(verticalPixels -1) .* unitVertical;
25

26 ray_11 = unitCamDir - outerPixelHorzDist .* unitHorizontal + outerPixelVertDist .* unitVertical;
27

28 %Define system of diffeqs
29 metricName = ’Schwarz ’;
30 % OR
31 % metricName = ’Kerr ’;
32

33 % load([’geodesics_ ’ metricName ’.mat ’]);
34 % OR
35 load([’geodesics_lagrange_ ’ metricName ’.mat’])
36

37 eq1 = geodesics {1};
38 eq2 = geodesics {2};
39 eq3 = geodesics {3};
40 eq4 = geodesics {4};
41

42 eqs = [eq1; eq2; eq3; eq4];
43

44 [V,S] = odeToVectorField(eqs);
45

46 geoFunc = matlabFunction(V,’vars’,{’lambda ’,’Y’});
47

48 %Drawing the screen
49 viewPort = zeros(verticalPixels*horizontalPixels ,3);
50 diskPic = imread(’diskTexture_2.png’);
51 background = imread(’stars.jpg’);

8

52 dimsBG = size(background);
53 dimsDisk = size(diskPic);
54

55 lambda_f = 100;
56

57 diskRadius = r_s + 15;
58

59 parfor pixel = 1: horizontalPixels*verticalPixels
60 warning(’off’,’MATLAB:ode23t:IntegrationTolNotMet ’);
61 i = mod(pixel -1, horizontalPixels)+1;
62 j = ceil(pixel/verticalPixels);
63

64 %Ray direction
65 thisRay = ray_11 + horizontalStep*j - verticalStep*i;
66

67 thisRaySph = cartToSphereVel(thisRay ,camPos);
68 camPosSph = cartToSpherePos(camPos);
69

70 timeComp = norm(thisRay);
71

72 %Define initial conditions based on camera pos and ray dir
73 initCond = [camPosSph (1); thisRaySph (1); 0; timeComp; ...
74 camPosSph (2); thisRaySph (2); camPosSph (3); thisRaySph (3)];
75

76 soln = ode23t(geoFunc ,[0 lambda_f], initCond);
77

78 theseRadii = soln.y(1,:);
79 radMask = (theseRadii < diskRadius) & (theseRadii > (r_s+1));
80

81 theseThetas = soln.y(5,:);
82 delThetas = [0 theseThetas -pi/2] .* [theseThetas -pi/2 0];
83 thetaMask = delThetas < 0;
84

85 thesePhis = soln.y(7,:);
86

87 accretionMask = radMask & thetaMask (2:end);
88

89 if soln.x(end) < (lambda_f - 10)
90 backColor = zeros (1,1,3);
91 else
92 thisTheta = soln.y(5,end);
93 thisPhi = soln.y(7,end);
94

95 raw_u = thisTheta/pi;
96 raw_v = 1 - (thisPhi /(2*pi)+0.5);
97

98 u = mod(floor(raw_u*dimsBG (1)),dimsBG (1))+1;
99 v = mod(floor(raw_v*dimsBG (2)),dimsBG (2))+1;

100

101 backColor = double(background(u,v,:));
102 end
103

104 if any(accretionMask)
105 rIntersections = theseRadii(accretionMask);
106 thisR = rIntersections (1);
107 phiIntersections = thesePhis(accretionMask);
108 thisPhi = phiIntersections (1);
109

110 normalizedR = (thisR/diskRadius);
111

112 raw_u = normalizedR /2*cos(thisPhi)+0.5;
113 raw_v = normalizedR /2*sin(thisPhi)+0.5;
114

115 u = mod(floor(raw_u*dimsDisk (1)),dimsDisk (1))+1;
116 v = mod(floor(raw_v*dimsDisk (2)),dimsDisk (2))+1;
117

118 accretionColor = double(diskPic(u,v,:));
119

120 opacity = exp(1-1/(1- normalizedR ^2));
121

122 if sum(accretionMask) > 1
123 thisR_2 = rIntersections (2);

9

124 thisPhi_2 = phiIntersections (2);
125

126 normalizedR_2 = (thisR_2/diskRadius);
127

128 raw_u_2 = normalizedR_2 /2*cos(thisPhi_2)+0.5;
129 raw_v_2 = normalizedR_2 /2*sin(thisPhi_2)+0.5;
130

131 u_2 = mod(floor(raw_u_2*dimsDisk (1)),dimsDisk (1))+1;
132 v_2 = mod(floor(raw_v_2*dimsDisk (2)),dimsDisk (2))+1;
133

134 accretionColor_2 = double(diskPic(u_2 ,v_2 ,:));
135

136 opacity_2 = exp(1-1/(1- normalizedR_2 ^2));
137

138 thisColor_2 = accretionColor_2*opacity_2 + backColor *(1- opacity_2);
139 thisColor = accretionColor*opacity + thisColor_2 *(1- opacity);
140 else
141 thisColor = accretionColor*opacity + backColor *(1- opacity);
142 end
143 else
144 thisColor = backColor;
145 end
146

147 viewPort(pixel ,:) = thisColor;
148 end
149

150 viewPort = reshape(viewPort ,horizontalPixels ,verticalPixels ,3);
151 image(uint8(viewPort));
152

153 function [spherical] = cartToSphereVel(cart ,pos)
154 x = pos (1);
155 y = pos (2);
156 z = pos (3);
157 r = sqrt(x^2+y^2+z^2);
158 J = [x/r y/r z/r; ...
159 x*z/(r^2* sqrt(x^2+y^2)) y*z/(r^2* sqrt(x^2+y^2)) -(x^2+y^2)/(r^2* sqrt(x^2+y^2)); ...
160 -y/(x^2+y^2) x/(x^2+y^2) 0];
161 spherical = J*cart.’;
162 spherical = spherical .’;
163 end
164

165 function [spherical] = cartToSpherePos(cart)
166 x = cart (1);
167 y = cart (2);
168 z = cart (3);
169 r = sqrt(x^2+y^2+z^2);
170 theta = acos(z/r);
171 if x > 0
172 phi = atan(y/x);
173 elseif x < 0 && y >= 0
174 phi = atan(y/x) + pi;
175 elseif x < 0 && y < 0
176 phi = atan(y/x) - pi;
177 elseif x == 0 && y > 0
178 phi = pi/2;
179 elseif x == 0 && y < 0
180 phi = -pi/2;
181 elseif x == 0 && y == 0
182 phi = 0;
183 end
184 spherical = [r theta phi];
185 end

If you made it this far thanks for reading

10

